Expanded molecular diversity generation during directed evolution by trinucleotide exchange (TriNEx)

نویسندگان

  • Amy J. Baldwin
  • Kathy Busse
  • Alan M. Simm
  • D. Dafydd Jones
چکیده

Trinucleotide exchange (TriNEx) is a method for generating novel molecular diversity during directed evolution by random substitution of one contiguous trinucleotide sequence for another. Single trinucleotide sequences were deleted at random positions in a target gene using the engineered transposon MuDel that were subsequently replaced with a randomized trinucleotide sequence donated by the DNA cassette termed SubSeq(NNN). The bla gene encoding TEM-1 beta-lactamase was used as a model to demonstrate the effectiveness of TriNEx. Sequence analysis revealed that the mutations were distributed throughout bla, with variants containing single, double and triple nucleotide changes. Many of the resulting amino acid substitutions had significant effects on the in vivo activity of TEM-1, including up to a 64-fold increased activity toward ceftazidime and up to an 8-fold increased resistance to the inhibitor clavulanate. Many of the observed amino acid substitutions were only accessible by exchanging at least two nucleotides per codon, including charge-switch (R164D) and aromatic substitution (W165Y) mutations. TriNEx can therefore generate a diverse range of protein variants with altered properties by combining the power of site-directed saturation mutagenesis with the capacity of whole-gene mutagenesis to randomly introduce mutations throughout a gene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expanded chemical diversity sampling through whole protein evolution.

A directed evolution method has been developed that allows random substitution of a contiguous trinucleotide sequence for TAG throughout a target gene for use in conjunction with an expanded genetic code. Using TEM-1 beta-lactamase and enhanced green fluorescent protein as targets, protein variants were identified whose functional phenotype was rescued in vivo when co-expressed with orthogonal ...

متن کامل

Transposon-based approaches for generating novel molecular diversity during directed evolution.

This chapter introduces a set of transposon-based methods that were developed to sample trinucleotide deletion, trinucleotide replacement, and domain insertion. Each approach has a common initial step that utilizes an engineered version of the Mu transposon called MuDel. The inherent low sequence specificity of MuDel results in its random insertion into target DNA during in vitro transposition....

متن کامل

Trinucleotide repeats in the human genome: size distributions for all possible triplets and detection of expanded disease alleles in a group of Huntington disease individuals by the repeat expansion detection method.

Using a modified Repeat Expansion Detection (RED) assay, that was optimized for individual oligonucleotides, unrelated individuals were systematically screened for maximal repeat sizes of each of the ten possible trinucleotide repeats. Cloned trinucleotide repeats were generated and used as standards for the detectability of single copy trinucleotide repeat fragments. When the size distribution...

متن کامل

Very large (CAG)(n) DNA repeat expansions in the sperm of two spinocerebellar ataxia type 7 males.

Genetic anticipation, i.e. increasing disease severity and decreasing age of onset from one generation to the next, is observed in a number of diseases, including myotonic dystrophy type 1, Huntington's disease and several of the spinocerebellar ataxias. All of these disorders are associated with the expansion of a trinucleotide repeat and array length is positively correlated with disease seve...

متن کامل

Mismatched nucleotides may facilitate expansion of trinucleotide repeats in genetic diseases.

We have studied the contribution of mismatch sequences to the trinucleotide repeat expansion that causes hereditary diseases. Using an oligonucleotide duplex, (CAG)5/(CTG)5, as a template-primer, DNA synthesis was carried out using either Escherichia coli DNA polymerase I (Klenow fragment) or human immunodeficiency virus type I reverse transcriptase (HIV-RT). Both enzymes expanded the repeat se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008